Water-induced ultralong room temperature phosphorescence by constructing hydrogen-bonded networks
2020
Room temperature phosphorescence (RTP) materials show potential applications in information security and optoelectronic devices, but it is still a challenge to achieve RTP in organic materials under water ambient due to the unstable property of triplet states. Herein, water-induced RTP has been demonstrated in the organic microrod (OMR). Noting that the RTP intensity of the as-prepared OMR is greatly enhanced when water is introduced, and the reason for the enhancement can be attributed to the formation of hydrogen-bonded networks inside the OMR. The hydrogen-bonded networks can confine the molecular motion effectively, leading to the stability of triplet states; thus the lifetime of the OMR can reach 1.64 s after introducing water. By virtue of the long lifetime of the OMR in the presence of water, multilevel data encryption based on the OMR has been demonstrated.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
41
References
17
Citations
NaN
KQI