First-Principles Study on Cathode Properties of Li2MTiO4 (M = V, Cr, Mn, Fe, Co, and Ni) with Oxygen Deficiency for Li-Ion Batteries

2018 
We study the cathode properties of Li2MTiO4 (M = V, Cr, Mn, Fe, Co, and Ni) for Li-ion batteries by performing first-principles calculations. Formation energies and voltages for Li2−xMTiO4 (0 ≤ x ≤ 2) models with rock-salt-based structures considering several Li concentrations (2 − x) are calculated. Two dominant charge/discharge reaction mechanisms associated with redox reactions of M and O are found mainly in the ranges of lower and higher x, respectively. In the higher-x region, the O redox reactions can destabilize atomic structures, because the electron removal from O-p states produces high peaks at the fermi level in the density of states. The structural stability of O using the models with O deficiency is calculated, and the result shows that O can dissociate much more easily than Li in the higher-x region. The critical Li concentration at which the vacancy formation energy of O becomes lower than that of Li is estimated, and the critical x value decreases with increasing number of 3d electrons as ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    7
    Citations
    NaN
    KQI
    []