Automated Detection of Usage Errors in non-native English Writing
2011
In an investigation of the use of a novelty detection algorithm for identifying inappropriate word
combinations in a raw English corpus, we employ an
unsupervised detection algorithm based on the one-
class support vector machines (OC-SVMs) and extract
sentences containing word sequences whose frequency
of appearance is significantly low in native English
writing. Combined with n-gram language models and
document categorization techniques, the OC-SVM classifier assigns given sentences into two different
groups; the sentences containing errors and those
without errors. Accuracies are 79.30 % with bigram
model, 86.63 % with trigram model, and 34.34 % with four-gram model.
Keywords:
- Correction
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI