Macro-invertebrates in a dynamic river environment: analysis of time series from artificial substrates, using a ‘white box’ neural network modelling method

2007 
New statistical modelling methods, such as neural networks (NNs), allow us to take a step further in the understanding of complex relations in aquatic ecosystems. In this paper the results from the analysis of macro-invertebrate communities in a complex riverine environment are presented. We attempted to explain observed changes in species composition and abundance with neural network modelling methods and compared the results to linear regression. The NN method used is an improved form of the RF5 algorithm, developed to effectively discover numeric laws from data. RF5 uses Product Unit Networks (PUNs), which are in effect multivariate non-discrete power functions. The data set consisted of a 10-year time series of monthly samples of macro-invertebrates on artificial substrates in the rivers Rhine and Meuse in the Netherlands. During this period the invertebrate community has largely changed coinciding with the invasion of Ponto-Caspian crustaceans. We used physical –chemical data and data on the abundance of the invasive taxa Corophium curvispinum and Dikerogammarus villosis to explain the observed changes in the resident invertebrate community. The analyses showed temperature, abundance of invasive taxa and peak discharges as important factors. Comparison of the results from NN modelling to linear regression revealed that the factors temperature and abundance of Dikerogammarus villosis explained equally well in both cases. Only the neural network was able to use information on peak discharge and timing of the peak in the previous winter to improve model performances. Neural networks are known to yield excellent modelling results, a drawback however is their lack of transparency or their ‘black box’ character. The use of relatively easy interpretable (white box) PUNs allows us to investigate the extracted relations in more detail and can enhance our understanding of ecosystem functioning. Our results show that peak discharges might be an important factor structuring invertebrate communities in rivers and hint on the existence of interacting effects from invasive species and discharge peaks. They finally show the value of biological data sets that are collected over a long period and in a highly standardised way.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    5
    Citations
    NaN
    KQI
    []