Topology-dependent stability of vortex-antivortex structures

2021 
The non-trivial topology of magnetic structures such as vortices and skyrmions is considered as a key concept to explain the stability of those structures. The stability, dictated by non-trivial topology, provides great potential for device applications. Although it is a very critical scientific and technological issue, it is elusive to experimentally study the topology-dependent stability owing to the difficulties in establishing stably formed magnetic structures with different topologies. Here, we establish a platform for vortex-antivortex structures with different topological charges within Ni80Fe20 rectangular elements thick enough to stabilize a unique three-dimensional magnetic structure with non-uniform magnetization along the thickness of the elements. The detailed magnetization configurations of the three-dimensional vortex-antivortex structures and their annihilations during their field-driven motions are investigated by utilizing magnetic transmission soft x-ray microscopy and micromagnetic simulation. We demonstrate that the stability of vortex-antivortex structures significantly depends on their topologies and the topology-dependent stability is associated with their different annihilation mechanisms. We believe that this work provides in-depth insight into the stability of magnetic structures and its topology dependence.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    2
    Citations
    NaN
    KQI
    []