Calculation of strain compensation thickness for III–V semiconductor quantum dot superlattices

2016 
Abstract Models based on continuum elasticity theory are discussed to calculate the necessary thickness of a strain compensation (SC) layer for a superlattice (SL) of strained quantum wells (QW) or quantum dots (QD). These models are then expanded to cover material systems (substrates, QW or QD, and SC) composed of AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, or InSb, as well as the ternary, quaternary, and higher order material alloys possible in the Al/Ga/In/P/As/Sb systems. SC thickness calculation methods were compared against dynamical scattering simulations and experimental X-ray diffraction measurements of the InAs/GaP/GaAs QD/SC/Substrate superlattices of varying SC thickness. Based on the reduced (but not eliminated) strain present, a further modified strain compensation thickness is calculated to maximize the number of SL repeat units before the onset of misfit dislocations is also calculated. These models have been assembled into a free application on nanoHUB for use by the community.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    14
    Citations
    NaN
    KQI
    []