Controlling the proximity in a Co/Nb multilayer: the properties of electronic transport
2020
We present both a theoretical and experimental investigation of the proximity effect in a stack-like superconductor/ferromagnet (S/F) superlattice, where ferromagnetic layers with different thicknesses and coercive fields are made of Co. Calculations based on Usadel equations allow us to find conditions at which switching from the parallel to the antiparallel alignment of neighboring F-layers leads to a significant change of the superconducting order parameter in thin s-films. Experimentally we study the transport properties of a lithographically patterned Nb/Co multilayer. We observe that the resistive transition of the multilayer contains multiple steps, which we attribute to the transition of individual s-layers with Tc’s depending on the local magnetization orientation of neighbor F-layers. We argue that such superlattices can be used as tunable kinetic inductors, designed for artificial neural networks with a representation of information in the current domain.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
31
References
6
Citations
NaN
KQI