Ga vacancies and electrical compensation in β-Ga2O3 thin films studied with positron annihilation spectroscopy

2019 
We have applied positron annihilation spectroscopy to study vacancy-type defects in unintentionally doped and Si and Sn doped β-Ga2O3 homoepitaxial thin films grown by metal-organic chemical vapor deposition (MOCVD). We detect Ga vacancy related defects at high concentrations in semi-insulating and highly resistive material, while conductive (ntype) material exhibits very low Ga vacancy concentrations. These findings show that Ga vacancies can act as efficient electrical compensators for n-type conductivity, but their concentrations can be suppressed by controlling the growth environment, leading to efficient n-type doping. We also note the strong anisotropy of the positron annihilation signals and give recommendation for presenting positron data obtained in β-Ga2O3.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    4
    Citations
    NaN
    KQI
    []