Distribution and behaviour of dissolved selenium in tropical peatland-draining rivers and estuaries of Malaysia

2019 
Abstract. Selenium (Se) is an essential micronutrient for many organisms. Despite its importance, our current knowledge of the biogeochemical cycling of dissolved Se in tropical estuaries is limited, especially in Southeast Asia. To gain insights into Se cycling in tropical peat-draining rivers and estuaries, samples were collected from the Rajang, Maludam, Sebuyau, Simunjan, Sematan, Samunsam, and Lunda rivers and estuaries in western Sarawak, Malaysia, in March and September 2017 and analysed for various forms of Se (dissolved inorganic and organic). Mean total dissolved Se (TDSe), dissolved inorganic Se (DISe), and dissolved organic Se concentrations (DOSe) were 2.2 nmol L−1 (range: 0.7 to 5.7 nmol L−1), 0.18 nmol L−1 (range: less than the detection limit to 0.47 nmol L−1), and 2.0 nmol L−1 (range: 0.42 to 5.7 nmol L−1), respectively. In acidic, low-oxygen, organic-rich blackwater (peatland-draining) rivers, the concentrations of DISe were extremely low, whereas those of DOSe were high. In rivers and estuaries that drained peatland, DOSe / TDSe ratios ranged from 0.67 to 0.99, showing that DOSe dominated. The positive relationship between DISe and salinity and the negative relationship between DOSe and salinity indicate marine and terrestrial origins of DISe and DOSe, respectively. The positive correlations of DOSe with the humification index and humic-like chromophoric dissolved organic matter components in freshwater river reaches suggest that peat soils are probably the main source of DOSe. Discharges of water enriched with DOSe fractions associated with peatland-derived high-molecular-weight, high-aromaticity dissolved organic matter discharged from estuaries may promote productivity in the adjoining oligotrophic coastal waters. The results of this study suggest that the impacts of Se discharges on coastal ecosystems should be evaluated in the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    2
    Citations
    NaN
    KQI
    []