Synthesis and characterization of nanocrystalline hexagonal boron carbo-nitride under high temperature and high pressure

2007 
A study of the synthesis of hexagonal boron carbo-nitride (h-BCN) compounds via a two-step high-temperature and high-pressure (HTHP) technique using melamine (C3N6H6) and boron oxide (B2O3) as raw materials is presented. An amorphous BCN precursor was prepared at 1000 K under vacuum in a resistance furnace and then single-phase h-BCN nanocrystalline was synthesized at 1600 K and 5.1 GPa in a multi-anvil apparatus. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the final products were pure h-BCN crystals with the lattice constants a = 0.2510 nm and c = 0.6690 nm. The average grain size was about 150 nm. X-ray photoelectron spectroscopy (XPS) results confirmed the occurrence of bonding between C–C, C–N, C–B and N–B atoms. Raman scattering analysis suggested that there were three strong Raman bands centered at 1359, 1596 and 1617 cm−1, respectively. The band at 1617 cm−1 was considered to be consistent with the characteristic Raman peak of h-BCN.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    9
    Citations
    NaN
    KQI
    []