Thermo-Responsive Antimicrobial Hydrogel for the In-Situ Coating of Mesh Materials for Hernia Repair.

2020 
The prophylactic coating of prosthetic mesh materials for hernia repair with antimicrobial compounds is commonly performed before implantation of the mesh in the abdominal wall. We propose a novel alternative, which is a rifampicin-loaded thermo-responsive hydrogel formulation, to be applied on the mesh after its implantation. This formulation becomes a gel in-situ once reached body temperature, allowing an optimal coating of the mesh along with the surrounding tissues. In vitro, the hydrogel cytotoxicity was assessed using rabbit fibroblasts and antimicrobial efficacy was determined against Staphylococcus aureus. An in vivo rabbit model of hernia repair was performed; implanted polypropylene meshes (5 × 2 cm) were challenged with S. aureus (106 CFU), for two study groups—unloaded (n = 4) and 0.1 mg/cm2 rifampicin-loaded hydrogel (n = 8). In vitro, antibacterial activity of the hydrogel lasted for 5 days, without sign of cytotoxicity. Fourteen days after implantation, meshes coated with drug-free hydrogel developed a strong infection and resulted in poor tissue integration. Coating meshes with the rifampicin-loaded hydrogel fully prevented implant infection and permitted an optimal tissue integration. Due to its great performance, this, degradable, thermo-responsive antimicrobial hydrogel could potentially be a strong prophylactic armamentarium to be combined with prosthesis in the surgical field.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    2
    Citations
    NaN
    KQI
    []