Fe, N-doped carbonaceous catalyst activating periodate for micropollutant removal: Significant role of electron transfer

2022 
Abstract In this study, the performance of periodate (PI) on sulfadiazine (SDZ) degradation was evaluated using coagulation solid waste fabricated catalyst (CWBC), obtained by simple pyrolysis. SDZ effectively underwent 98.94% remove within 90 min in the CWBC/PI system. Electron transfer was the predominant mechanism due to the development of an electronic cycle among SDZ, CWBC and PI, where the O2•−, PFRs, and the reactive iodine species had minor roles. Density functional theory calculations identified that Fe and N could change the electron configuration and break the chemical inertness of carbonaceous material. As a result, electrons on the carbon matrix of CWBC are inclined to travel through the formed Fe–O covalent bond to PI. Further analysis demonstrated that SO42−, humic acid (HA), as well as anoxic conditions greatly facilitated SDZ degradation. This study provides a facile protocol for converting coagulation waste to an efficient catalyst and provides fundamental insights into the degradation mechanisms of micropollutants by activating PI.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    0
    Citations
    NaN
    KQI
    []