Methodology for Assessment of Surface Defects in Undermatched Pipeline Girth Welds

2015 
The demand for subsea transport of highly corrosive constituents has noticeably increased in recent years. This has driven the requirement for high strength pipelines with enhanced corrosion resistance such as chromium stainless steel or bimetal pipes. The latter are carbon steel pipes with a corrosion resistant alloy lining. Reeling is a cost effective installation method for small to medium size subsea pipelines, up to 457.2 mm (18 in.) in diameter. However, plastic straining associated with reeling has an effect on weld defect acceptance criteria. The maximum acceptable defect sizes are typically developed using engineering critical assessment (ECA), based on the reference stress method, which requires that the weld metal is equal to or stronger than the parent metal in terms of the stress–strain curve. However, evenmatch/overmatch cannot always be achieved in the case of subsea stainless or bimetal pipelines. In this work, a parametric finite-element (FE) study was performed to assess the effect of weld metal undermatch on the crack driving force, expressed in terms of the crack tip opening displacement (CTOD). Subsequently, the fracture assessment methodology for reeled pipes was proposed, where the ECA as per BS7910 is first carried out. These acceptable defect sizes are then reduced, using an analytical formula developed in this work, to account for weld undermatch. [DOI: 10.1115/1.4029190]
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    8
    Citations
    NaN
    KQI
    []