Drought increases heat tolerance of leaf respiration in Eucalyptus globulus saplings grown under both ambient and elevated atmospheric [CO2] and temperature

2014 
Climate change is resulting in increasing atmospheric [CO2], rising growth temperature (T), and greater frequency/severity of drought, with each factor having the potential to alter the respiratory metabolism of leaves. Here, the effects of elevated atmospheric [CO2], sustained warming, and drought on leaf dark respiration (Rdark), and the short-term T response of Rdark were examined in Eucalyptus globulus. Comparisons were made using seedlings grown under different [CO2], T, and drought treatments. Using high resolution T–response curves of Rdark measured over the 15–65 °C range, it was found that elevated [CO2], elevated growth T, and drought had little effect on rates of Rdark measured at T <35 °C and that there was no interactive effect of [CO2], growth T, and drought on T response of Rdark. However, drought increased Rdark at high leaf T typical of heatwave events (35–45 °C), and increased the measuring T at which maximal rates of Rdark occurred (Tmax) by 8 °C (from 52 °C in well-watered plants to 60 °C in drought-treated plants). Leaf starch and soluble sugars decreased under drought and elevated growth T, respectively, but no effect was found under elevated [CO2]. Elevated [CO2] increased the Q10 of Rdark (i.e. proportional rise in Rdark per 10 °C) over the 15–35 °C range, while drought increased Q10 values between 35 °C and 45 °C. Collectively, the study highlights the dynamic nature of the T dependence of Rdark in plants experiencing future climate change scenarios, particularly with respect to drought and elevated [CO2].
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    119
    References
    29
    Citations
    NaN
    KQI
    []