Mineral-modulated Co catalyst with enhanced adsorption and dissociation of BH4- for hydrogenation of p-nitrophenol to p-aminophenol.

2021 
Abstract: Slow adsorption and dissociation kinetics of NaBH4 onto the catalyst surface limit the hydrogenation reduction of hazardous p-nitrophenol to worthy p-aminophenol. Herein, we design a mineral-modulated catalyst to facilitate the rate-limiting step. Carbon-coated etched attapulgite (EAtp@C) is obtained by HF treatment. Co/EAtp@C is fabricated via anchoring cobalt nanoparticles (CoNPs) on the carrier EAtp@C. Compared to pure Co, the anchored CoNPs are more electronegative and stable, which provides abundant and stable active sites and accelerates the BH4− adsorption and dissociation. Therefore, Co/EAtp@C leads to nearly 100% reduction of p-nitrophenol to p-aminophenol within 8 min and its apparent rate constant Kapp (0.69 min−1) is 4 times higher than that of pure Co. Thermodynamic calculations show a lower activation energy (37.92 kJ mol-1) of Co/EAtp@C catalyst than that of pure Co. Co/EAtp@C also shows magnetic separability and good stability by remaining 98.6% of catalytic conversion rate after six cycles. Significantly, we detect the active species Co–H, and reveal the electron transfer mechanism between catalysts, BH4−, and p-nitrophenol by electrochemical method. These results offer a fundamental insight into the catalytic mechanism of p-nitrophenol hydrogenation for rational design of efficient catalysts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    0
    Citations
    NaN
    KQI
    []