Extended antibody-framework-to-antigen distance observed exclusively with broad HIV-1-neutralizing antibodies recognizing glycan-dense surfaces.

2021 
Antibody-Framework-to-Antigen Distance (AFAD) – the distance between the body of an antibody and a protein antigen – is an important parameter governing antibody recognition. Here, we quantify AFAD for ~2,000 non-redundant antibody-protein-antigen complexes in the Protein Data Bank. AFADs showed a gaussian distribution with mean of 16.3 A and standard deviation (σ) of 2.4 A. Notably, antibody-antigen complexes with extended AFADs (>3σ) were exclusively human immunodeficiency virus-type 1 (HIV-1)-neutralizing antibodies. High correlation (R2 = 0.8110) was observed between AFADs and glycan coverage, as assessed by molecular dynamics simulations of the HIV-1-envelope trimer. Especially long AFADs were observed for antibodies targeting the glycosylated trimer apex, and we tested the impact of introducing an apex-glycan hole (N160K); the cryo-EM structure of the glycan hole-targeting HIV-1-neutralizing antibody 2909 in complex with an N160K-envelope trimer revealed a substantially shorter AFAD. Overall, extended AFADs exclusively recognized densely glycosylated surfaces, with the introduction of a glycan hole enabling closer recognition. Here, the authors analyse the distance between the body of an antibody and a protein antigen denoted as the Antibody-Framework-to-Antigen Distance (AFAD) for about 2000 non-redundant antibody-protein antigen complexes in the Protein Data Bank. They observe that antibodies with exceptionally long AFADs were all broad HIV-1-neutralizing antibodies that targeted densely glycosylated regions on the HIV-1-envelope trimer. The connection between long AFAD and dense glycan was further validated by the cryo-EM structure of antibody 2909 recognizing a glycan hole and by glycan shielding analyses based on molecular dynamics simulations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    0
    Citations
    NaN
    KQI
    []