Microstructure Development and Properties of HSS-Based Self-Lubrication Composites

2011 
High speed steel based ceramic preforms with three-dimensionally interpenetrated micropores were fabricated using the mixture of TiH2, CaCO3 and stearic acid as pore-forming agent. A self-made vacuum high pressure infiltration furnace was used to infiltrate the preforms with Pb-Sn based solid lubricants to create almost fully dense self-lubrication composites. The microstructure and properties of HSS-based self-lubrication composites were investigated as a function of sintered porosity. A quantitative analysis of microstructure was correlated with crushing strength,microhardness and wear rate to understand the influence of pore size, shape and distribution on mechanical and tribological behavior. Crushing strength and microhardness decreased with an increase in porosity. Meanwhile the decrease in microhardness with increasing porosity was slightly. The friction coefficient of HSS-based self-lubrication composites decreased with increasing the volume fraction of lubricant due to the self-lubrication and unique micropore structure. Within the range of lubricant volume fraction from 0% to 14%, the wear rate of the composites decreased steadily with the increase of lubricant content in the composites. Micropore structure and lubricant volume fraction play an important role in determining wear resistance of the composites whereas the measured bulk properties seem to be of minor importance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    2
    Citations
    NaN
    KQI
    []