Development of ultrafast detector for advanced time-of-flight brain PET

2018 
Purpose: Time-of-flight (TOF) been successfully implemented in whole body PET, significantly improving clinical performance. However, TOF has not been a priority in development of dedicated brain PET systems due the relatively small size of the human head, where coincidence timing resolution (CTR) below 200 ps is necessary to arrive at substantial performance improvements. The Brain PET (BET) consortium is developing a PET detector block with ultrafast CTR, high sensitivity and high spatial resolution (X, Y, depth of interaction, DOI) that provides a pathway to significantly improved brain PET. Methods: We have implemented analytical and Monte Carlo models of scintillation photons transport in scintillator segments with the trans-axial cross-section equal or smaller than 3x3 mm 2 . Results: The signal amplitude and timing of W mm x W mm x L mm scintillators (1 mm rd photon produces the shortest CTR for SPTR=50 ps. Conclusions: We established that the advanced silicon photomultiplier designs with high single photon detection efficiency (QE=60%) and high single photon timing resolution (SPTR =50 ps) are critical for achieving ultrafast TOF-PET performance with CTR ~50 ps and ~4 mm DOI resolution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    1
    Citations
    NaN
    KQI
    []