GW/BSE Nonadiabatic Dynamics Simulations on Excited-State Relaxation Processes of Zinc Phthalocyanine-Fullerene Dyads: Roles of Bridging Chemical Bonds

2021 
In this work, we employ electronic structure calculations and nonadiabatic dynamics simulations based on many-body Green function and Bethe-Salpeter equation (GW/BSE) methods to study excited-state properties of a zinc phthalocyanine-fullerene (ZnPc-C60) dyad with 6-6 and 5-6 configurations. In the former, the initially populated locally excited (LE) state of ZnPc is the lowest S1 state and thus, its subsequent charge separation is relatively slow. In contrast, in the latter, the S1 state is the LE state of C60 while the LE state of ZnPc is much higher in energy. There also exist several charge-transfer (CT) states between the LE states of ZnPc and C60. Thus, one can see apparent charge separation dynamics during excited-state relaxation dynamics from the LE state of ZnPc to that of C60. These points are verified in dynamics simulations. In the first 200 fs, there is a rapid excitation energy transfer from ZnPc to C60, followed by an ultrafast charge separation to form a CT intermediate state. This process is mainly driven by hole transfer from C60 to ZnPc. The present work demonstrates that different bonding patterns (i.e. 5-6 and 6-6) of the C-N linker can be used to tune excited-state properties and thereto optoelectronic properties of covalently bonded ZnPc-C60 dyads. Methodologically, it proves that combined GW/BSE nonadiabatic dynamics method is a practical and reliable tool for exploring photoinduced dynamics of nonperiodic dyads, organometallic molecules, quantum dots, nanoclusters, etc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []