Magnetic and electrical properties of single‐phase, single‐crystal Fe16N2 films epitaxially grown by molecular beam epitaxy (invited)

1996 
The average magnetic moment per Fe atom for a single‐phase, single‐crystal Fe16N2(001) film epitaxially grown on a GaAs(001) substrate by molecular beam epitaxy has been confirmed to be 3.5μB at room temperature by using a vibrating sample magnetometer (VSM) and Rutherford backscattering. The value was in good agreement with that obtained by using a VSM and by measuring the film thickness (3.3μB per Fe atom). The saturation magnetization 4πMs has been found to increase with decreasing temperature, obeying T3/2 law at lower temperatures. The slope was steeper than that of a pure Fe film, suggesting a lower exchange constant for Fe16N2. The g factor for Fe16N2 has been accurately measured to be 2.17 by using ferromagnetic resonance with changing frequencies of 35.5–115 GHz, which is not unusual compared with the g factor of 2.16 for pure Fe. The resistivity for Fe16N2 has been measured to be around 30 μΩ cm at room temperature compared with 10 μΩ cm for pure Fe and decreases linearly with decreasing tempera...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    56
    Citations
    NaN
    KQI
    []