Coulomb blockade due to quantum phase slips illustrated with devices

2011 
To illustrate the emergence of Coulomb blockade from coherent quantum phase-slip processes in thin superconducting wires, we propose and theoretically investigate two elementary setups, or devices. The setups are derived from the Cooper-pair box and Cooper-pair transistor, so we refer to them as the QPS box and QPS transistor, respectively. We demonstrate that the devices exhibit sensitivity to a charge induced by a gate electrode, this being the main signature of Coulomb blockade. Experimental realization of these devices will unambiguously prove the Coulomb blockade as an effect of coherence of phase-slip processes. We analyze the emergence of discrete charging in the limit of strong phase slips. We have found and investigated six distinct regimes that are realized depending on the relation between three characteristic energy scales: inductive energy, charging energy, and phase-slip amplitude. For completeness, we include a brief discussion of dual Josephson-junction devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    47
    Citations
    NaN
    KQI
    []