Compact Models for Radiation Hardening by Design of SiGe BiCMOS, GaAs and SOI CMOS Microwave Circuits

2021 
Compact models of silicon-germanium and gallium-arsenide heterojunction bipolar transistors, gallium-arsenide pseudomorphic high electron mobility transistor, and silicon on insulator field-effect transistor radiation responses are presented. Special subcircuits for modeling displacement damages, dose rate, and total ionizing dose effects are connected to the standard device models. Models based on core VBIC, EEHEMT and BSIM provided by semiconductor foundry as a part of process design kit and verified in a frequency range from DC to 26 GHz and suitable for small signal and non-linear simulation. Radiation-dependent parameters are described by physically based equations which compatible with proprietary simulators. Examples of radiation-hardening by design techniques for microwave monolithic integrated circuits (MMIC) are presented with standard computer-aided design (CAD) tools. Proposed models were verified by estimating static and dynamic characteristics of transistors. Disagreement of experimental and simulation results are less than 20% that makes it useful and efficient tool for MMIC radiation hardening by design.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []