Glycine transporter type 1 (GlyT1) inhibition improves conspecific-provoked immobility in Balb/c mice: Analysis of corticosterone response and glucocorticoid gene expression in cortex and hippocampus

2020 
Abstract Stress reactivity and glucocorticoid signaling alterations are reported in mouse models of autism spectrum disorder (ASD). Balb/c mice display decreased locomotor activity in the presence of stimulus mice and spend less time exploring enclosed stimulus mice; this mouse strain has been validated as an ASD model. VU0410120, a glycine type 1 transporter (GlyT1) inhibitor, improved sociability in Balb/c mice, consistent with data that NMDA Receptor (NMDAR) activation regulates sociability, and the endogenous tone of NMDAR-mediated neurotransmission is altered in this strain. Effects of a prosocial dose of VU0410120 on conspecific-provoked immobility, and relationships between conspecific-provoked immobility and corticosterone response were explored. VU0410120-treated Balb/c mice showed reduced immobility in the presence of conspecifics and increased the conspecific-provoked corticosterone response. However, the intensity of conspecific-provoked immobility in VU0410120-treated Balb/c mice did not differ as a function of corticosterone response. Expression profiles of 88 glucocorticoid signaling associated genes within frontal cortex and hippocampus were examined. Balb/c mice resistant to prosocial effects of VU0410120 had increased mRNA expression of Ddit4, a negative regulator of mTOR signaling. Dysregulated mTOR signaling activity is a convergent finding in several monogenic syndromic forms of ASD. Prosocial effects of VU0410120 in the Balb/c strain may be related to regulatory influences of NMDAR-activation on mTOR signaling activity. Because corticosterone response is a marker of social stress, the current data suggest that the stressfulness of a social encounter alone may not be the sole determinant of increased immobility in Balb/c mice; this strain may also display an element of social disinterest.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    2
    Citations
    NaN
    KQI
    []