Edge effects on band gap energy in bilayer 2H-MoS2 under uniaxial strain
2015
The potential of ultrathin MoS2 nanostructures for applications in electronic and optoelectronic devices requires a fundamental understanding in their electronic structure as a function of strain. Previous experimental and theoretical studies assume that an identical strain and/or stress state is always maintained in the top and bottom layers of a bilayer MoS2 film. In this study, a bilayer MoS2 supercell is constructed differently from the prototypical unit cell in order to investigate the layer-dependent electronic band gap energy in a bilayer MoS2 film under uniaxial mechanical deformations. The supercell contains an MoS2 bottom layer and a relatively narrower top layer (nanoribbon with free edges) as a simplified model to simulate the as-grown bilayer MoS2 flakes with free edges observed experimentally. Our results show that the two layers have different band gap energies under a tensile uniaxial strain, although they remain mutually interacting by van der Waals interactions. The deviation in their ba...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
39
References
17
Citations
NaN
KQI