Factors Influencing the Accuracy of Shallow Snow Depth Measured Using UAV-Based Photogrammetry

2021 
Factors influencing the accuracy of UAV-photogrammetry-based snow depth distribution maps were investigated. First, UAV-based surveys were performed on the 0.04 km2 snow-covered study site in South Korea for 37 times over the period of 13 days under 16 prescribed conditions composed of various photographing times, flight altitudes, and photograph overlap ratios. Then, multi-temporal Digital Surface Models (DSMs) of the study area covered with shallow snow were obtained using digital photogrammetric techniques. Next, the multi-temporal snow depth distribution maps were created by subtracting the snow-free DSM from the multi-temporal DSMs of the study area. Then, snow depth in these UAV-Photogrammetry-based snow maps were compared to the in situ measurements at 21 locations. The accuracy of each of the multi-temporal snow maps were quantified in terms of bias (median of residuals, QΔD) and precision (the Normalized Median Absolute Deviation, NMAD). Lastly, various factors influencing these performance metrics were investigated. The results are as follows: (1) the QΔD and NMAD of the eight surveys performed at the optimal condition (50 m flight altitude and 80% overlap ratio) ranged from −2.30 cm to 5.90 cm and from 1.78 cm to 4.89 cm, respectively. The best survey case had −2.30 cm of QΔD and 1.78 cm of NMAD; (2) Lower UAV flight altitude and greater photograph overlap lower the NMAD and QΔD; (3) Greater number of Ground Control Points (GCPs) lowers the NMAD and QΔD; (4) Spatial configuration and accuracy of GCP coordinates influenced the accuracy of the snow depth distribution map; (5) Greater number of tie-points leads to higher accuracy; (6) Smooth fresh snow cover did not provide many tie-points, either resulting in a significant error or making the entire photogrammetry process impossible.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    1
    Citations
    NaN
    KQI
    []