Electron dissipation after radio-frequency discharge burst at atmospheric pressure

2021 
The discharge characteristics and mechanism of pulse modulated radio frequency (RF) atmospheric pressure glow discharge (APGD) are studied using a two-dimensional self-consistent numerical fluid model. The ignition of an RF discharge burst is demonstrated by the increase in RF current amplitude and evolution of the discharge spatial profile from a bell shape to a double-hump shape. With a time interval of 80 µs between two consecutive RF discharge bursts, the electron dissipation after an RF discharge burst is shown, whose reduction slope changes from 1.7 × 1022 m−3s−1 to 9.1 × 1019 m−3s−1 with a time delay. The corresponding electron dissipation mechanism is proposed to be the electron loss due to reactions in the discharge bulk and the drift of electrons across the discharge gap, which explains the continuum and discrete operation modes in pulse modulated RF APGD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    0
    Citations
    NaN
    KQI
    []