The Scallop Theorem and Swimming at the Mesoscale
2020
By synergistically combining modeling, simulation and experiments, we show that there exists a regime of self-propulsion in which the inertia in the fluid dynamics can be separated from that of the swimmer. This is demonstrated by the motion of an asymmetric dumbbell that, despite deforming in a reciprocal fashion, self-propagates in a fluid due to a non-reciprocal Stokesian flow field. The latter arises from the difference in the coasting times of the two constitutive beads. This asymmetry acts as a second degree of freedom, recovering the scallop theorem at the mesoscopic scale.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
47
References
1
Citations
NaN
KQI