A revised 1.6 Å structure of the GTPase domain of the Parkinson’s disease-associated protein LRRK2 provides insights into mechanisms
2019
Leucine-rich repeat kinase 2 (LRRK2) is a large 286 kDa multi-domain protein whose mutation is a common cause of Parkinson’s disease (PD). One of the common sites of familial PD-associated mutations occurs at residue Arg-1441 in the GTPase domain of LRRK2. Previously, we reported that the PD-associated mutation R1441H impairs the catalytic activity of the GTPase domain thereby traps it in a persistently "on" state. More recently, we reported that the GTPase domain of LRRK2 exists in a dynamic dimer-monomer equilibrium where GTP binding shifts it to the monomeric conformation while GDP binding shifts it back to the dimeric state. We also reported that all of the PD-associated mutations at Arg-1441, including R1441H, R1441C, and R1441G, impair the nucleotide-dependent dimer-monomer conformational dynamics of the GTPase domain. However, the mechanism of this nucleotide-dependent conformational dynamics and how it is impaired by the mutations at residue Arg-1441 remained unclear. Here, we report a 1.6 A crystal structure of the GTPase domain of LRRK2. Our structure has revealed a dynamic switch region that can be differentially regulated by GTP and GDP binding. This nucleotide-dependent regulation is impaired when residue Arg-1441 is substituted with the PD-associated mutations due to the loss of its exquisite interactions consisting of two hydrogen bonds and a π-stacking interaction at the dimer interface. Significance Statement Mutations in LRRK2 are associated with familial Parkinson’s disease, so understanding its mechanism of actions and how they are changed by the disease-associated mutations is important for developing therapeutic strategies. This paper describes an atomic structure of the G-domain of LRRK2 revealing that the conformational dynamics of the switch regions are potentially important for its normal function. It further shows that a disease-associated mutation could lock the G domain in a persistently active-like conformation, thus perturbing its normal function.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI