Temperature and injection current dependence of electroluminescence intensity in green and blue InGaN single-quantum-well light-emitting diodes

2003 
Temperature and injection current dependence of electroluminescence (EL) spectral intensity of the superbright green and blue InGaN single-quantum-well (SQW) light-emitting diodes has been studied over a wide temperature range (T=15−300 K) and as a function of injection current level (0.1–10 mA). It is found that, when temperature is slightly decreased to 140 K, the EL intensity efficiently increases in both cases, as usually seen due to the improved quantum efficiency. However, with further decrease of temperature down to 15 K, unusual reduction of the EL intensity is commonly observed for both of the two diodes. At low temperatures the integrated EL intensity shows a clear trend of saturation with current, accompanying decreases of the EL differential quantum efficiency. We attribute the EL reduction due to trapping of injected carriers by nonradiative recombination centers. Its dependence on temperature and current shows a striking difference between the green and blue SQW diodes. That is, we find that...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    56
    Citations
    NaN
    KQI
    []