language-icon Old Web
English
Sign In

Sequential Core-Set Monte Carlo

2021 
Sequential Monte Carlo (SMC) is a general-purpose methodology for recursive Bayesian inference, and is widely used in state space modeling and probabilistic programming. Its resample-move variant reduces the variance of posterior estimates by interleaving Markov chain Monte Carlo (MCMC) steps for particle “rejuvenation”; but this requires accessing all past observations and leads to linearly growing memory size and quadratic computation cost. Under the assumption of exchangeability, we introduce sequential core-set Monte Carlo (SCMC), which achieves constant space and linear time by rejuvenating based on sparse, weighted subsets of past data. In contrast to earlier approaches, which uniformly subsample or throw away observations, SCMC uses a novel online version of a state-of-the-art Bayesian core-set algorithm to incrementally construct a nonparametric, data- and model-dependent variational representation of the unnormalized target density. Experiments demonstrate significantly reduced approximation errors at negligible additional cost.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []