Untargeted Metabolomics Analysis Reveals a Link between ETHE1-Mediated Disruptive Redox State and Altered Metabolic Regulation

2016 
Defects in the gene encoding the persulfide dioxygenase ETHE1 are known to cause the severe inherited metabolic disorder ethylmalonic encephalopathy (EE). In spite of known clinical characteristics, the molecular mechanisms underlying the ETHE1 deficiency are still obscure. Herein, to further analyze the molecular phenotype of the disease, we applied an untargeted metabolomics approach on cultivated fibroblasts of EE patients for pinpointing alterations in metabolite levels. Metabolites, as direct signatures of biochemical functions, can decipher biochemical pathways involved in the cellular phenotype of patient cells. Using liquid chromatography–mass spectrometry-based untargeted metabolomics, we identified 18 metabolites that have altered levels in fibroblasts from EE patients. Our data demonstrate disrupted redox state in EE patient cells, which is reflected by significantly decreased level of reduced glutathione. Furthermore, the down-regulation of several intermediate metabolites such as the redox co...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    10
    Citations
    NaN
    KQI
    []