Polydiacetylene liposome-encapsulated alginate hydrogel beads for Pb2+ detection with enhanced sensitivity

2015 
The development of a novel and simple method to trace lead ions (Pb2+) has received great attention due to its high toxicity to human health and the environment. In this paper, we describe a new polydiacetylene (PDA)-based liposome sensor for the colorimetric and fluorometric detection of Pb2+ in aqueous solution and in alginate hydrogel microbeads. In the sensor system, a dopamine group was rationally introduced into a diacetylene monomer to work as a strong binding site for Pb2+. The dopamine-functionalized monomer and 10,12-pentacosadiynoic acid (PCDA) were then incorporated into PDA liposomes in aqueous solution. After UV light-induced polymerization, deep blue colored liposome solutions were obtained. Upon the addition of various metal ions into the liposome solution, only Pb2+ could cause a distinct color change from blue to red and a dramatic fluorescence enhancement. To further improve its sensitivity and address its intrinsic aggregation, we then developed a liposome-immobilized detection system by encapsulating PDA–DA liposomes into alginate hydrogel beads through a microfluidic droplet-based method. The results showed that the PDA–DA liposome-containing hybrid hydrogel beads possessed excellent stability and high sensitivity. These interesting findings demonstrated that the PDA liposome system developed in the current study may offer a new method for Pb2+ recognition in a more efficient manner.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    45
    Citations
    NaN
    KQI
    []