Preparation of ZnO/Bi2O3 Composites as Heterogeneous Thin Film Materials with High Photoelectric Performance on FTO Base

2021 
In recent years, ZnO nanomaterials have achieved great performance in solar energy applications. How to synthesize a ZnO nanocomposite structure with high photoelectric conversion efficiency has become an urgent problem to solved. In this paper, a narrow band gap bismuth trioxide (Bi2O3) coated on a ZnO nanoarray by magnetron sputtering was used to prepare a composite heterojunction ZnO/Bi2O3. Studies have found that ZnO/Bi2O3 exhibits excellent photoelectric conversion performance. By preparing a composite heterostructure of ZnO/Bi2O3, it can effectively compensate for the insufficient absorption of ZnO in the visible light range and inhibit the recombination of carriers within the material. The influence of Bi2O3 thickness on the microstructure and electronic structure of the ZnO/Bi2O3 composite structure was explored and analyzed. The energy gap width of the composite heterostructure decreases with the increase in the Bi2O3 thickness on the surface of the ZnO nanorod array. At the same time, the conductive glass composite film structure is simple to prepare and is very environmentally friendly. The ZnO/Bi2O3 composite heterogeneous material prepared this time is suitable for solar cells, photodetectors, photocatalysis and other fields.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    6
    Citations
    NaN
    KQI
    []