Sub-2 V, Transfer-Stamped Organic/Inorganic Complementary Inverters Based on Electrolyte-Gated Transistors

2018 
Organic/inorganic hybrid complementary inverters operating at low voltages (1 V or less) were fabricated by transfer-stamping organic p-type poly(3-hexylthiophene) (P3HT) and inorganic n-type zinc oxide (ZnO) electrolyte-gated transistors (EGTs). A semicrystalline homopolymer-based gel electrolyte, or an ionogel, was also transfer-stamped on the semiconductors for use as a high-capacitance gate insulator. For the ionogel stamping, the thermoreversible crystallization of phase-separated homopolymer crystals, which act as network cross-links, was employed to improve the contact between the gel and the semiconductor channel. The homopolymer ionogel-gated P3HT transistor exhibited a high hole mobility of 2.81 cm2/(V s), and the ionogel-gated n-type ZnO transistors also showed a high electron mobility of 2.06 cm2/(V s). The transfer-stamped hybrid complementary inverter based on the P3HT and ZnO EGTs showed a low-voltage operation with appropriate inversion characteristics including a high voltage gain of ∼18....
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    20
    Citations
    NaN
    KQI
    []