Cytochrome P450 2B6 Catalyzes the Formation of Pharmacologically Active Sibutramine (N-{1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutyl}-N,N-dimethylamine) Metabolites in Human Liver Microsomes

2008 
We identified cytochrome P450 (P450) isozymes that are involved in the formation of two active sibutramine ( N -{1-[1-(4-chlorophenyl)-cyclobutyl]-3-methylbutyl}- N , N -dimethylamine) metabolites, M1 ( N -{1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutyl}- N -methylamine) and M2 (1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutylamine), in humans using a combination chemical inhibition, correlation analyses in human liver microsomes (HLMs), and activity assays using recombinant P450s. Mechanism-based CYP2B6 inhibitors (i.e., clopidogrel, ticlopidine, and triethylenethiophoramide) significantly inhibited the formation of M1 from sibutramine and M2 from M1, respectively; in contrast, no effect was observed when using potent inhibitors of eight P450 isozymes (CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A). In addition, the formations of M1 from sibutramine ( r = 0.694, p = 0.0029) and M2 from M1 ( r = 0.834, p 5 μM), those contributions might be minor considering usual concentrations of sibutramine and M1 in the clinical setting. The kinetics of M1 and/or M2 formation from sibutramine in HLMs were fitted by a two-enzyme model, and the mean apparent K m value (4.79 μM) for high-affinity component was similar to that observed in recombinant CYP2B6 (8.02 μM). In conclusion, CYP2B6 is the primary catalyst for the formation of sibutramine two active metabolites, which may suggest that pharmacogenetics and drug interactions of sibutramine in relation to CYP2B6 activity should be considered in the pharmacotherapy of sibutramine.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    40
    Citations
    NaN
    KQI
    []