β‐sheet breakers with consecutive phenylalanines: insights into mechanism of dissolution of β‐amyloid fibrils

2021 
β-sheet breakers (BSB) constitute a class of peptide inhibitors of amyloidogenesis, a process which is a hallmark of many diseases called amyloidoses, including Alzheimer's disease (AD), however the molecular details of their action are still not fully understood. Here we describe the results of the computational investigation of the three BSBs, iaβ6 (LPFFFD), iaβ5 (LPFFD) and iaβ6_Gly (LPFGFD), in complex with the fibril model of Aβ42 and propose the kinetically probable mechanism of their action. The mechanism involves the binding of BSB to the central hydrophobic core (CHC) region (LVFFA) of Aβ fibril and the π-stacking of its Phe rings both internally and with the Aβ fibril. In the process the Aβ fibril undergoes distortion accumulating on the side of chain A (located on the odd tip of the fibril). In a single replica of extended molecular dynamics run of one of the iaβ6 poses, the distortion concludes in a dissociation of chain A from the fibril model of Aβ42. Altogether, we postulate that including consecutive Phe residues into BSBs docked around Phe 20 in the CHC region of Aβ42 improve their potency for dissolution of fibrils. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    2
    Citations
    NaN
    KQI
    []