Simulations of linear and nonlinear Rayleigh-Taylor instability under high Atwood numbers

1997 
Inertial confinement fusion (ICF) implosions, whether real or ideal, are subject to a variety of hydrodynamic instabilities that amplify small departures from spherical symmetry. Asymmetric implosions departing from spherical symmetry can lead to the breakup of the imploding shell or the creation of hydrodynamic turbulence. In an effort to understand the evolution of the asymmetries, perturbation “seeds” with both velocity and surface displacements have been introduced at the boundary of two different density media to model analytical Rayleigh-Taylor instability growth. Growth of perturbed amplitudes has been studied in linear and late-time nonlinear regimes. Simulated linear growth rates and nonlinear bubble velocities are in good agreement with theoretical values for Atwood numbers that are close to unity (relevant to ICF applications).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []