Computational study and optimization experiment of nZVI modified by anionic and cationic polymer for Cr(VI) stabilization in soil: Kinetics and response surface methodology (RSM).

2021 
Abstract Nanoscale zero-valent iron (nZVI) modified by cationic polyquaternium-7 (M550-nZVI) or anionic carboxymethyl cellulose (CMC-nZVI) were freshly synthesized, and followed by the successful applicability for the stabilization of Cr(VI) in soil. Scanning electron microscope (SEM) showed that the sizes of M550-nZVI and CMC-nZVI were 42-170 nm and 66-200 nm, respectively. X-ray diffraction (XRD) confirmed the presence of Fe0 and Fe3C in the as-synthesized composites. The kinetics were well fitted with pseudo-second order model (R2>0.99), indicating that the process was principally chemical reduction. Additionally, we observed that M550-nZVI had better resistance to oxidation than that of CMC-nZVI. Besides, RSM experiments showed that acetate ion (AA) could promote the Cr(VI) removal but humic acid ion (HA) and carbonate ion (CA) resulted in negative effects. Moreover, the modeling predication revealed that the optimum Cr(VI) removal of 92.44% by CMC-nZVI was available, being 22.52% higher than that of M550-nZVI. In conclusion, this work demonstrated that the inoxidizability of M550-nZVI had a dominant advantage, while CMC-nZVI had the more excellent reactivity than M550-nZVI. We believe that our conducted research work will open the new avenues for effective removal of heavy metals from the soil.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    10
    Citations
    NaN
    KQI
    []