Altered resting-state brain activity at functional MRI during automatic memory consolidation of fear conditioning

2013 
Abstract Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms of fear acquisition and extinction. However, the neural mechanism of automatic memory consolidation of fear conditioning is still unclear. To address this question, we measured brain activity following fear acquisition using resting-state functional magnetic resonance imaging (rs-fMRI). In the current study, we used a marker of fMRI, amplitude of low-frequency (0.01–0.08 Hz) fluctuation (ALFF) to quantify the spontaneous brain activity. Brain activity correlated to fear memory consolidation was observed in parahippocampus, insula, and thalamus in resting-state. Furthermore, after acquired fear conditioning, compared with control group some brain areas showed ALFF increased in ventromedial prefrontal cortex (vmPFC) and anterior cingulate cortex (ACC) in the experimental group, whereas some brain areas showed decreased ALFF in striatal regions (caudate, putamen). Moreover, the change of ALFF in vmPFC was positively correlated with the subjective fear ratings. These findings suggest that the parahippocampus, insula, and thalamus are the neural substrates of fear memory consolidation. The difference in activity could be attributed to a homeostatic process in which the vmPFC and ACC were involved in the fear recovery process, and change of ALFF in vmPFC predicts subjective fear ratings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    23
    Citations
    NaN
    KQI
    []