Reducing the Scanning Time in Near-Field Measurements with an Optimized Sampling and an Optimized Controller on Arduino Due
2018
The aim of the paper is to address a relevant issue in the Near-Field (NF) measurements: the reduction of the measurement time. Generally speaking, for a given hardware, two main directions can be pursued. The first requires the adoption of an optimal field sampling strategy that reduces the number of sampling points, and the length of the scanning path, without impairing accuracy. The second strategy adopts an optimized control system able to exploit at the best the available hardware (scanning system and measurement instrument). Indeed, the latency of the instrument defines the maximum probe velocity during the field acquisition. Accordingly, unlike the conventional continuous scanning, an optimized controller can speed up the scanning by moving the probe along the measurement trajectory with a variable velocity, accelerating and decelerating between two consecutive sampling points, to increase the average speed. However, the use of an optimized controller is fruitful only when the optimized sampling scheme allows large distances between two consecutive sampling locations, to increase as much as possible the maximum probe speed. In this paper, by suitably using both the above strategies, it is proposed a fast NF system, implemented on a microcontroller Arduino Due, an extremely cheap and off the shelf hardware, that is able to handle the scanner and realize the synergy between the optimized sampling and the optimized control strategy. The simulation and experimental results show a dramatic reduction of the measurement time (up to one order of magnitude) with a high tracking precision (also in accordance with the proposed methodology), and of the costs with respect to standard solutions.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
4
References
2
Citations
NaN
KQI