language-icon Old Web
English
Sign In

The PROSPECT Physics Program

2016 
The Precision Reactor Oscillation and Spectrum Experiment, PROSPECT, is designed to make a precise measurement of the antineutrino spectrum from a highly-enriched uranium reactor and probe eV-scale sterile neutrinos by searching for neutrino oscillations over meter-long distances. PROSPECT is conceived as a 2-phase experiment utilizing segmented $^6$Li-doped liquid scintillator detectors for both efficient detection of reactor antineutrinos through the inverse beta decay reaction and excellent background discrimination. PROSPECT Phase I consists of a movable 3-ton antineutrino detector at distances of 7 - 12 m from the reactor core. It will probe the best-fit point of the $\nu_e$ disappearance experiments at 4$\sigma$ in 1 year and the favored region of the sterile neutrino parameter space at $>$3$\sigma$ in 3 years. With a second antineutrino detector at 15 - 19 m from the reactor, Phase II of PROSPECT can probe the entire allowed parameter space below 10 eV$^{2}$ at 5$\sigma$ in 3 additional years. The measurement of the reactor antineutrino spectrum and the search for short-baseline oscillations with PROSPECT will test the origin of the spectral deviations observed in recent $\theta_{13}$ experiments, search for sterile neutrinos, and conclusively address the hypothesis of sterile neutrinos as an explanation of the reactor anomaly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    57
    Citations
    NaN
    KQI
    []