Temperature control of levitated nanoparticles in an optical trap

2021 
Optically levitated nanoparticles provide excellent systems to sense minute forces and explore quantum effects in a large system. However, optically levitated nanoparticles are prone to heating and require cooling and temperature stabilization to reach sensitivities necessary to study small forces and quantum effects. This problem can be solved by trapping nanocrystals doped with rare-earth ions that can be anti-Stokes cooled by tens of degrees. The efficiency of the anti-Stokes depends on gas pressure and can counter heating due to optical absorption. Cooling nanocrystals allows for thermally stabilizing nanocrystal systems to measure minute forces and quantum effects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []