Fabrication of flat micro‐gap electrodes for molecular electronics

2005 
Recently, organic molecular electronic devices such as molecular thin-film transistors have received considerable attention as possible candidates for next-generation electronic and optical devices. This paper reports on fabrication technologies of flat metallic electrodes on insulating substrates with a micrometer separation for high-performance molecular device evaluation. The key technologies of fabricating planar-type electrodes are the liftoff method by the combination of bilayer photoresist with overhang profile, electron beam evaporation of thin metal (Ti and Au) films, and SiO2-CMP (Chemical Mechanical Polishing) method of CVD (Chemical Vapor Deposition)-deposited TEOS (tetraethoxysilane)–SiO2 layer. The raggedness of the electrode/insulator interface and the electrode surface of the micro-gap electrodes were less than 3 nm. The isolation characteristics of fabricated electrodes were on the order of 1013 ohms at room temperature, which is sufficient for evaluating electronic properties of organic thin-film devices. Finally, pentacene FET (Field Effect Transistor) characteristics are discussed fabricated on the micro-gap flat electrodes. The mobility of this FET was 0.015 cm2/Vs, which was almost on the order of the previous results. These results suggest that high-performance organic thin-film transistors can be realized on these advanced electrode structures. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 152(2): 39–46, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/eej.20152
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    4
    Citations
    NaN
    KQI
    []