Parallel real-time quantum random number generator

2019 
The quantum random number generation exploits inherent randomness of quantum mechanical processes and measurements. The real-time generation rate of quantum random numbers is usually limited by electronic bandwidth and data processing rates. Here we use a multiplexing scheme to create a fast real-time quantum random number generator based on continuous variable vacuum fluctuations. Multiple sideband frequency modes of a quantum vacuum state within a homodyne detection bandwidth are concurrently extracted as the randomness source. Parallel postprocessing of raw data from three subentropy sources is realized in one field-programmable gate array (FPGA) based on Toeplitz-hashing extractors. A cumulative generation rate of 8.25 Gbps in real time is achieved. The system relies on optoelectronic components and circuits that could be integrated in a compact, economical package.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    3
    Citations
    NaN
    KQI
    []