Features of application of the methane-hydrogen fraction as fuel for thermal power plant boiler

2019 
The methane-hydrogen fraction is a gaseous hydrocarbon by-product during oil processing for obtaining petroleum products. Until recently, the methane-hydrogen fraction was used as furnace oil in internal technological processes at a refinery. Some of the low-calorie methane-hydrogen fraction was burned in flares. Driven by the prospect of the methane-hydrogen fraction use as a fuel alternative to natural gas for burning in thermal power plants boilers, it became necessary to study the methane-hydrogen fraction combustion processes in large volumes. The conversion of ON-1000/1 and ON-1000/2 furnaces from the combustion of the methane- hydrogen fraction with combustion heat of 25.45 MJ/m 3  to the combustion of the composition with combustion heat of 18.8 MJ/m 3  leads to a decrease in temperature in the flame core for 100 °C as an average. The intensity of flame radiation on the radiant tubes decreases. Therefore, the operation of furnaces during combustion of methane-hydrogen fraction with a low heat of combustion at the gas oil hydro-treating unit is carried out only with a fresh catalyst, which allows lower flame temperatures in the burner. The experiments to determine the concentration of nitrogen oxides NO x and the burning rate w of the methane-hydrogen fraction in the ON-1000/1 furnace and natural gas in the TGM-84A boiler, depending upon the heat of combustion Q n r  were carried out. The obtained results showed that the increase in the hydrogen content Н 2  from 10.05 % to 18.36% (by mass) results in an increase in the burning rate w by 45%. The burning rate of natural gas with methane CH 4  content of 98.89% in the TGM-84A boiler is 0.84 m/s, i.e. it is 2.5 times lower than the burning rate of the methane- hydrogen fraction with H 2  content of 10.05%. The distributions of heat flux from the flame qf over the burner height h in the TGM-84A boiler were obtained in case of natural gas burning and calculation of burning of the methane-hydrogen fraction with a hydrogen content of 10.05% and methane of 28.27%. The comparison of the obtained data shows that burning of methane- hydrogen fraction causes an increase in the incident heat flux qf at the outlet of the burner.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    1
    Citations
    NaN
    KQI
    []