Controllable antibacterial and bacterially anti-adhesive surface fabricated by a bio-inspired beetle-like macromolecule.

2020 
Abstract Drug resistance to bacteria becomes an emerging intractable problem, therefore, developing novel antibacterial agents has become urgently needed. Herein, a bio-inspired design strategy was adopted to synthesize a series of beetle-like macromolecule of multiple quaternary ammonium salts (QASs), which was designed with different cationic charge densities and numbers of hexadecane chains by adjusting their different quaternization degree (QD). It was found that the fabricated fabric surface with them exhibited controllable and outstanding antibacterial and bacterially anti-adhesive properties. More importantly, the antibacterial efficiency was demonstrated to be enhanced with the increasing of QD, and related to the zeta potential, and surface tension. Additionally, the proposed bacterially anti-adhesive model of action revealed the “resisting effect” of hydration layer which greatly resisted the adhesion of bacteria.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    28
    Citations
    NaN
    KQI
    []