Computerized physical exercise improves the functional architecture of the brain in patients with Parkinson's Disease: a network science resting-state EEG study

2020 
Physical exercise is an effective non-pharmaceutical treatment for Parkinsons disease (PD) symptoms, both motor and non-motor. Despite the numerous reports on the neuroplastic role of physical exercise in patients with PD (PwPD), its effects have not been thoroughly explored via brain network science, which can provide a coherent framework for understanding brain functioning. We used resting-state EEG data to investigate the functional connectivity changes of the brains intrinsic cortical networks due to physical exercise. The brain activity of 14 PwPD before and after a ten-week protocol of computerized physical training was statistically compared to quantify changes in directed functional connectivity in conjunction with psychometric and somatometric assessments. PwPD showed a significant reorganization of the post-training brain network along with increases in their physical capacity. Specifically, our results revealed significant adjustments in clustering, increased characteristic path length, and decreased global efficiency, in correlation to the improved physical capacity. Our results go beyond previous findings by indicating a transition to a reparative network architecture of enhanced connectivity. We present a meaningful relationship between network characteristics and motor execution capacity which support the use of motor treatment in tandem with medication. This trial is registered with ClinicalTrials.gov Identifier NCT04426903. Impact StatementThe effects of physical training (PT) on the neuroplasticity attributes of patients with Parkinsons Disease (PwPD) have been well documented via neurophysiological evaluations. However, there is a knowledge gap on the role of training-induced neuroplasticity in whole-brain network organization. We investigated the PT effects on the brain network organization of 14 PwPD, using EEG and network indices coupled with psychosomatometric tests. We report evidence of reparative functional reorganization of the brain with more balanced integration and segregation abilities, in correlation to improved motor performance. The PD brain can repair and reestablish a better level of motor execution and control due to computer-empowered physical stimulation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    0
    Citations
    NaN
    KQI
    []