A Cloud-Resolving Simulation Study on the Merging Processes and Effects of Topography and Environmental Winds

2012 
AbstractThe cloud-resolving fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) was used to study the cloud interactions and merging processes in the real case that generated a mesoscale convective system (MCS) on 23 August 2001 in the Beijing region. The merging processes can be grouped into three classes for the studied case: isolated nonprecipitating and precipitating cell merging, cloud cluster merging, and echo core or updraft core merging within cloud systems.The mechanisms responsible for the multiscale merging processes were investigated. The merging process between nonprecipitating cells and precipitating cells and that between clusters is initiated by forming an upper-level cloud bridge between two adjacent clouds due to upper-level radial outflows in one vigorous cloud. The cloud bridge is further enhanced by a favorable middle- and upper-level pressure gradient force directed from one cloud to its adjacent cloud by accelerating cloud pa...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    8
    Citations
    NaN
    KQI
    []