The bioconversion of 5-deoxystrigol to sorgomol by the sorghum, Sorghum bicolor (L.) Moench

2013 
Strigolactones, important rhizosphere signalling molecules and a class of phytohormones that control shoot architecture, are apocarotenoids of plant origin. They have a structural core consisting of a tricyclic lactone connected to a butyrolactone group via an enol ether bridge. Deuterium-labelled 5-deoxystrigol stereoisomers were administered to aquacultures of a high sorgomol-producing sorghum cultivar, Sorghum bicolor (L.) Moench, and conversion of these substrates to sorgomol stereoisomers was investigated. Liquid chromatography–mass spectrometry analyses established that 5-deoxystrigol (5-DS) and ent-2′-epi-5-deoxystrigol were absorbed by sorghum roots, converted to sorgomol and ent-2′-epi-sorgomol, respectively, and exuded out of the roots. The conversion was inhibited by uniconazole-P, implying the involvement of cytochrome P450 in the hydroxylation. These results provide experimental evidence for the postulated biogenetic scheme for formation of strigolactones, in which hydroxylation at C-9 of 5-DS can generate sorgomol.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    26
    Citations
    NaN
    KQI
    []