Quantum Dynamics Simulations Reveal Vibronic Effects on the Optical Properties of [n]Cycloparaphenylenes
2014
The size-dependent ultraviolet/visible photophysical property trends of [n]cycloparaphenylenes ([n]CPPs, n = 6, 8, and 10) are theoretically investigated using quantum dynamics simulations. For geometry optimizations on the ground- and excited-state Born–Oppenheimer potential energy surfaces (PESs), we employ density functional theory (DFT) and time-dependent DFT calculations. Harmonic normal-mode analyses are carried out for the electronic ground state at Franck–Condon geometries. A diabatic Hamiltonian, comprising four low-lying singlet excited electronic states and 26 vibrational degrees of freedom of CPP, is constructed within the linear vibronic coupling (VC) model to elucidate the absorption spectral features in the range of 300–500 nm. Quantum nuclear dynamics is simulated within the multiconfiguration time-dependent Hartree approach to calculate the vibronic structure of the excited electronic states. The symmetry-forbidden S0 → S1 transition appears in the longer wavelength region of the spectrum...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
48
References
23
Citations
NaN
KQI